Figure 15: Three-group pipeline.
Groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requires one inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1 inter-communicator.
main(int argc, char **argv) { MPI_Comm myComm; /* intra-communicator of local sub-group */ MPI_Comm myFirstComm; /* inter-communicator */ MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */ int membershipKey; int rank; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); /* User code must generate membershipKey in the range [0, 1, 2] */ membershipKey = rank % 3; /* Build intra-communicator for local sub-group */ MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm); /* Build inter-communicators. Tags are hard-coded. */ if (membershipKey == 0) { /* Group 0 communicates with group 1. */ MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1, 1, &myFirstComm); } else if (membershipKey == 1) { /* Group 1 communicates with groups 0 and 2. */ MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0, 1, &myFirstComm); MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2, 12, &mySecondComm); } else if (membershipKey == 2) { /* Group 2 communicates with group 1. */ MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1, 12, &myFirstComm); } /* Do work ... */ switch(membershipKey) /* free communicators appropriately */ { case 1: MPI_Comm_free(&mySecondComm); case 0: case 2: MPI_Comm_free(&myFirstComm); break; } MPI_Finalize(); }
Figure 16: Three-group ring.
Groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate. Therefore, each requires two inter-communicators.
main(int argc, char **argv) { MPI_Comm myComm; /* intra-communicator of local sub-group */ MPI_Comm myFirstComm; /* inter-communicators */ MPI_Comm mySecondComm; MPI_Status status; int membershipKey; int rank; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); ... /* User code must generate membershipKey in the range [0, 1, 2] */ membershipKey = rank % 3; /* Build intra-communicator for local sub-group */ MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm); /* Build inter-communicators. Tags are hard-coded. */ if (membershipKey == 0) { /* Group 0 communicates with groups 1 and 2. */ MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1, 1, &myFirstComm); MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2, 2, &mySecondComm); } else if (membershipKey == 1) { /* Group 1 communicates with groups 0 and 2. */ MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0, 1, &myFirstComm); MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 2, 12, &mySecondComm); } else if (membershipKey == 2) { /* Group 2 communicates with groups 0 and 1. */ MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 0, 2, &myFirstComm); MPI_Intercomm_create( myComm, 0, MPI_COMM_WORLD, 1, 12, &mySecondComm); } /* Do some work ... */ /* Then free communicators before terminating... */ MPI_Comm_free(&myFirstComm); MPI_Comm_free(&mySecondComm); MPI_Comm_free(&myComm); MPI_Finalize(); }
The following procedures exemplify the process by which a user could create name service for building intercommunicators via a rendezvous involving a server communicator, and a tag name selected by both groups.
After all MPI processes execute MPI_INIT, every process calls the example function, Init_server(), defined below. Then, if the new_world returned is NULL, the process getting NULL is required to implement a server function, in a reactive loop, Do_server(). Everyone else just does their prescribed computation, using new_world as the new effective ``global" communicator. One designated process calls Undo_Server() to get rid of the server when it is not needed any longer.
Features of this approach include:
#define INIT_SERVER_TAG_1 666 #define UNDO_SERVER_TAG_1 777 static int server_key_val; /* for attribute management for server_comm, copy callback: */ void handle_copy_fn(MPI_Comm *oldcomm, int *keyval, void *extra_state, void *attribute_val_in, void **attribute_val_out, int *flag) { /* copy the handle */ *attribute_val_out = attribute_val_in; *flag = 1; /* indicate that copy to happen */ } int Init_server(peer_comm, rank_of_server, server_comm, new_world) MPI_Comm peer_comm; int rank_of_server; MPI_Comm *server_comm; MPI_Comm *new_world; /* new effective world, sans server */ { MPI_Comm temp_comm, lone_comm; MPI_Group peer_group, temp_group; int rank_in_peer_comm, size, color, key = 0; int peer_leader, peer_leader_rank_in_temp_comm; MPI_Comm_rank(peer_comm, &rank_in_peer_comm); MPI_Comm_size(peer_comm, &size); if ((size < 2) || (0 > rank_of_server) || (rank_of_server >= size)) return (MPI_ERR_OTHER); /* create two communicators, by splitting peer_comm into the server process, and everyone else */ peer_leader = (rank_of_server + 1) % size; /* arbitrary choice */ if ((color = (rank_in_peer_comm == rank_of_server))) { MPI_Comm_split(peer_comm, color, key, &lone_comm); MPI_Intercomm_create(lone_comm, 0, peer_comm, peer_leader, INIT_SERVER_TAG_1, server_comm); MPI_Comm_free(&lone_comm); *new_world = MPI_COMM_NULL; } else { MPI_Comm_Split(peer_comm, color, key, &temp_comm); MPI_Comm_group(peer_comm, &peer_group); MPI_Comm_group(temp_comm, &temp_group); MPI_Group_translate_ranks(peer_group, 1, &peer_leader, temp_group, &peer_leader_rank_in_temp_comm); MPI_Intercomm_create(temp_comm, peer_leader_rank_in_temp_comm, peer_comm, rank_of_server, INIT_SERVER_TAG_1, server_comm); /* attach new_world communication attribute to server_comm: */ /* CRITICAL SECTION FOR MULTITHREADING */ if(server_keyval == MPI_KEYVAL_INVALID) { /* acquire the process-local name for the server keyval */ MPI_keyval_create(handle_copy_fn, NULL, &server_keyval, NULL); } *new_world = temp_comm; /* Cache handle of intra-communicator on inter-communicator: */ MPI_Attr_put(server_comm, server_keyval, (void *)(*new_world)); } return (MPI_SUCCESS); }The actual server process would commit to running the following code:
int Do_server(server_comm) MPI_Comm server_comm; { void init_queue(); int en_queue(), de_queue(); /* keep triplets of integers for later matching (fns not shown) */ MPI_Comm comm; MPI_Status status; int client_tag, client_source; int client_rank_in_new_world, pairs_rank_in_new_world; int buffer[10], count = 1; void *queue; init_queue(&queue); for (;;) { MPI_Recv(buffer, count, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, server_comm, &status); /* accept from any client */ /* determine client: */ client_tag = status.MPI_TAG; client_source = status.MPI_SOURCE; client_rank_in_new_world = buffer[0]; if (client_tag == UNDO_SERVER_TAG_1) /* client that terminates server */ { while (de_queue(queue, MPI_ANY_TAG, &pairs_rank_in_new_world, &pairs_rank_in_server)) ; MPI_Comm_free(&server_comm); break; } if (de_queue(queue, client_tag, &pairs_rank_in_new_world, &pairs_rank_in_server)) { /* matched pair with same tag, tell them about each other! */ buffer[0] = pairs_rank_in_new_world; MPI_Send(buffer, 1, MPI_INT, client_src, client_tag, server_comm); buffer[0] = client_rank_in_new_world; MPI_Send(buffer, 1, MPI_INT, pairs_rank_in_server, client_tag, server_comm); } else en_queue(queue, client_tag, client_source, client_rank_in_new_world); } }A particular process would be responsible for ending the server when it is no longer needed. Its call to Undo_server would terminate server function.
int Undo_server(server_comm) /* example client that ends server */ MPI_Comm *server_comm; { int buffer = 0; MPI_Send(&buffer, 1, MPI_INT, 0, UNDO_SERVER_TAG_1, *server_comm); MPI_Comm_free(server_comm); }The following is a blocking name-service for inter-communication, with same semantic restrictions as MPI_Intercomm_create, but simplified syntax. It uses the functionality just defined to create the name service.
int Intercomm_name_create(local_comm, server_comm, tag, comm) MPI_Comm local_comm, server_comm; int tag; MPI_Comm *comm; { int error; int found; /* attribute acquisition mgmt for new_world */ /* comm in server_comm */ void *val; MPI_Comm new_world; int buffer[10], rank; int local_leader = 0; MPI_Attr_get(server_comm, server_keyval, &val, &found); new_world = (MPI_Comm)val; /* retrieve cached handle */ MPI_Comm_rank(server_comm, &rank); /* rank in local group */ if (rank == local_leader) { buffer[0] = rank; MPI_Send(&buffer, 1, MPI_INT, 0, tag, server_comm); MPI_Recv(&buffer, 1, MPI_INT, 0, tag, server_comm); } error = MPI_Intercomm_create(local_comm, local_leader, new_world, buffer[0], tag, comm); return(error); }