
The Message Passing Interface:
Towards MPI 4.0 & Beyond

Martin Schulz
TU Munich
Chair of the MPI Forum

MPI Forum BOF @
ISC 2019

https://www.mpi-forum.org/

Standardization body for MPI
• Discusses additions and new directions

• Oversees the correctness and quality of the standard

• Represents MPI to the community

Organization consists of chair, secretary, convener, steering committee,
and member organizations

Open membership
• Any organization is welcome to participate

• Consists of working groups and the actual MPI forum (plenary)

• Physical meetings 4 times each year (3 in the US, one with EuroMPI/Asia)

- Working groups meet between forum meetings (via phone)

- Plenary/full forum work is done mostly at the physical meetings

• Voting rights depend on attendance

- An organization has to be present two out of the last three meetings (incl. the

current one) to be eligible to vote

The MPI Forum Drives MPI

Collective Communication, Topology, Communicators, Groups
• Torsten Hoefler, Andrew Lumsdaine and Anthony Skjellum

Fault Tolerance
• Wesley Bland, Aurélien Bouteiller and Rich Graham

HW Topologies
• Guillaume Mercier

Hybrid Programming
• Pavan Balaji and Jim Dinan

Big Count
• Jeff Hammond and Anthony Skjellum

Persistence
• Anthony Skjellum

Point to Point Communication
• Rich Graham and Dan Holmes

Remote Memory Access
• Bill Gropp and Rajeev Thakur

Semantic Terms
• Rolf Rabenseifner and Purushotham Bangalore

Sessions
• Dan Holmes

Tools
• Kathryn Mohror and Marc-Andre Hermanns

The Bulk of Work is in the Working Groups

Collective Communication, Topology, Communicators, Groups
• Torsten Hoefler, Andrew Lumsdaine and Anthony Skjellum

Fault Tolerance
• Wesley Bland, Aurélien Bouteiller and Rich Graham

HW Topologies
• Guillaume Mercier

Hybrid Programming
• Pavan Balaji and Jim Dinan

Big Count
• Jeff Hammond and Anthony Skjellum

Persistence
• Anthony Skjellum

Point to Point Communication
• Rich Graham and Dan Holmes

Remote Memory Access
• Bill Gropp and Rajeev Thakur

Semantic Terms
• Rolf Rabenseifner and Purushotham Bangalore

Sessions
• Dan Holmes

Tools
• Kathryn Mohror and Marc-Andre Hermanns

The Bulk of Work is in the Working Groups

MPI 3.0 ratified in September 2012
• Major new functions

MPI 3.1 ratified in June 2015
• Minor updates and additions

Fully adopted in all major MPIs

MPI 4.0 work coming to an end
• Target end of 2020 or early 2021

Likely new features
• New init options via MPI Sessions
• New tool interface for events
• More optimization potential via persistence and non-blocking operations
• Solution for “Big Count” via some form of overloading
• Simple fault handling for P2P operations
• Introduction of assertions
• Topology optimizations

Draft standard available as of 11/18, second one planned for 11/19
• Standards and drafts available at http://www.mpi-forum.org/

The Status of MPI

Available through HLRS
-> MPI Forum Website

http://www.mpi-forum.org/

1. New items brought to a matching working group for discussion

2. Creation of preliminary proposal

3. Socializing of idea driven by the WG
Through community discussions, user feedback, publications, …

Development of full proposal
In many cases accompanied with prototype development work

4. MPI forum reading/voting process
One reading
Two votes

Slow and consensus driven process

5. Once enough topics are completed:
Publication of a new standard

How New Features Get Added to MPI

MPI Forum is an open forum
• Everyone / every organization can join
• Voting rights depends on attendance of physical meetings

Major initiatives towards MPI 4.0
• Active discussion in the respective WGs
• Need/want community feedback
• Feature freeze this year meetings
• Target date: late 2020, early 2021

Get involved
• Let us know what you or your applications need
- mpi-comments@mpi-forum.org

• Participate in WGs
- Email list and Phone meetings
- Each WG has its own Wiki

• Join us at a MPI Forum F2F meeting
- Next meetings: Zürich, CH (Sep.), Albuquerque, NM/USA (Dec.)

• EuroMPI will also be in Zürich: Sep. 10-13, 2019

Participate!!!

http://www.mpi-forum.org/

mailto:mpi-comments@mpi-forum.org

The Message Passing Interface:
Towards MPI 4.0 & Beyond

Technical MPI 4.0 Updates

https://www.mpi-forum.org/

Dan Holmes, EPCC
• MPI Sessions

Marc-Andre Hermanns, RWTH Aachen
• New Interfaces for MPI Tools

Anthony Skjellum, U. of Tennessee at Chattanooga
• Persistent Collectives
• Big Count
• Towards new language interfaces

Technical Updates

SESSIONS WG
Dan Holmes

What are sessions?

• A simple local handle to the MPI library

• An isolation mechanism for interactions with MPI

• An extra layer of abstraction/indirection

• A way for MPI/users to interact with underlying runtimes

• Schedulers, resource managers, others

• A solution for some threading problems in MPI

• Thread-safe initialisation by multiple entities (e.g. libraries)

• Re-initialisation after finalisation

• A way to avoid some implementation headaches in MPI

• Implementing MPI_COMM_WORLD efficiently is hard

• An attempt to control the error behaviour of initialisation

How can sessions be used?

• Initialise a session
• Query available process “sets”
• Obtain info about “sets” (optional)
• Create an MPI_Group directly
from a “set”

• Modify the MPI_Group (optional)
• Create an MPI_Communicator
directly from the MPI_Group
(without a parent communicator)
• Any type, e.g. cartesian or dist_graph

Query runtime
for set of processes

MPI_Group

MPI_Comm

MPI_Session

Why are sessions a good idea?
• Any thread/library/entity can use MPI whenever it wants

• Error handling for sessions is defined and controllable

• Initialisation and finalisation become implementation detail

• Scalability (inside MPI) should be easier to achieve

• Should complement & assist endpoints and fault tolerance

Who are sessions aimed at?
• Everyone!

• Library writers: no more reliance on main app for correct
initialisation and provision of an input MPI_Communicator

• MPI developers: should be easier to implement scalability,
resource management, fault tolerance, endpoints, …

• Application writers: MPI becomes ‘just like other libraries’

Sessions WG
• Fortnightly meetings, Monday 1pm Eastern US webex

• All welcome!

• https://github.com/mpiwg-sessions/sessions-issues/wiki

• Future business:

• Dynamic “sets”? Shrink/grow – user-controlled/faults?

• Interaction with tools? Issues caused by isolation?

• Different thread support levels on different sessions?

Things that got removed
• No more attributes on sessions

• The special attributes have been moved to communicators
• Get MPI_TAG_UB from the first communicator for the session

• No more “flags” for MPI_Session_init
• Thread support level can be specified using MPI_Info parameter
• It can be queried using the MPI_Info object for the session

Things that got added

• New initial error handler

• Added by the error handling and fault tolerance WG

• Currently initial and default error handler is ERRORS_ARE_FATAL

• From MPI-4.0, the user will be able to change this before MPI_INIT

• The Sessions Model uses those error handlers as well

• Errors before initialisation of MPI can be caught and handled

• Additional always thread-safe functions

• From MPI-4.0, MPI_Info is safe to use before MPI initialisation

• It is needed to call MPI_Session_init

• It is also needed for the new MPI_T events (see next presentation)

• There is now a prototype/reference implementation

• Written by Nathan Hjelm, targeting Open MPI

• https://github.com/hpc/ompi/tree/sessions_new

1 von 5

Current Topics of the MPI Forum Tools WG
Marc-André Hermanns, Kathryn Mohror, Martin Schulz

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

Overview of Topics

• MPI Info everywhere

• MPI_T Events

• MPI_T Universal IDs

• Re-vamping PMPI

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

MPI Info Everywhere

• MPI Info objects
- Key/value store
- Communicate information between user and implementation

• Some info needs to be communicated prior to (MPI) initialization
- MPI_T events: event type query, handle allocation, callback registration

• Also needed in other concepts (sessions, resiliency)

• Goal: Inclusion in MPI 4.0 (API mostly stable now)

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

MPI_T Events: Motivation

• MPI provides several tool interfaces

• PMPI interface
- Intercept calls into the MPI library
- MPI implementation is blackbox

• MPI_T interface
- Library implementations expose internal information
- Library-specific software counters
- Tools poll for information

§ Information is aggregated

• Access to per-instance information of the MPI library is still missing

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

MPI_T Events: Overview

• Blend into existing MPI_T interface
- Standardized query interface
- Implementation choose freely what information to expose

• Access to per-instance information
- Events represent state changes within the MPI implementation
- Tools can register callback functions

§ Implementation will invoke callback functions to convey information

• Goal: Inclusion in MPI 4.0 (API mostly stable now)

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

MPI_T Events: Key Features

• Transparent buffering
- Timestamps as part of event meta data
- Separate event observation from reporting

• Dynamic Safety Requirements
- Tool can register callbacks with different safety guarantees
- Runtime most permissive, safe callback

§ Runtime provides specific safety requirement to callback

• Multiple Event Sources
- Virtual entity as event data provider
- Enables support for partial ordering requirements

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

MPI_T Events: Workflow

Application

Address Space

and Threads

MPI

Runtime

Library

MPI Program

MPI_T_init_threa

d

1

• Tool initializes interface

1 Runtime initialization

• Runtime invokes callback functions

• Observation time ≠ Invocation time

• Runtime provides event instance handle

3 Callback functions

1st Party Tool

(same process)2
Query events &

register callbacks

3
Callbacks on

OpenMP

events

4
Querying (buffered)

event information

• Tool queries event data within callback

• Runtime provides potentially buffered

event information

4 Query event information

2
• Tool queries available events

• Tool creates registration handle

• Tool registers callback functions

Tool initialization

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

MPI_T Universal IDs

• MPI_T does not mandate specific variables to be present for an implementation

• Name/Semantic matching is allowed to change across implementations

• Universal IDs (UIDs) may mitigate problems for portable tools
- Fixed for specific semantics

§ Changes in semantics imply a new UID
§ UIDs may be shared across implementations

- Queried separate from name
§ Name/Semantic match remains flexible

- Namespaced (Separate Vendor Prefixes to UID)

• Goal: Inclusion into one of the next MPI versions (API still in flux)

Current Topics of the MPI Forum Tools WG | Marc-Andre Hermanns | ISC 2019

Re-vamping PMPI (Codename: QMPI)

• Replace existing PMPI interface
- Support hierarchy of multiple intercepting tools
- Transparent handle conversion (Tools only use C interface/handles)

• Callback-driven
- Query function pointer for ‘next level’ at runtime/initialization time
- Dynamic registration/deregistration of tools

• Goal: Inclusion in a future MPI version (API still in flux)

Thank you for your attention

MPI-4 Topics
1) Persistent Collectives

2) Partitioned Point-to-point
3) ”Big MPI”

Anthony Skjellum, PhD
University of Tennessee at Chattanooga

tony-skjellum@utc.edu

June 19, 2019
ISC 2019

28

Outline

§ Persistent Collectives

§ Partition Communication – Point-to-point
§ Big MPI

29

Collaborators

§ Persistent WG
Collective WG
– Tony Skjellum, Dan Holmes, Ryan Grant, Puri Bangalore, …

§ Point-to-point WG
– Dan Holmes, Ryan Grant, et al

§ Large Count WG
– Jeff Squyres, Dan Holmes, Puri Bangalore,

Martin Rüfenacht, Tony Skjellum

§ Language Binding Chapter – Puri et al

§ Cross-cutting discussions on-going currently
30

Persistent Collective Operations
§ Use-case: a collective operation is done many times in an

application
§ The specific sends and receives represented never change (size,

type, lengths, transfers)
§ A persistent collective operation can take the time to apply a

heuristic and choose a faster way to move that data
§ Fixed cost of making those decisions could be high but can be

amortized over all the times the operation is used
§ Static resource allocation can be done
§ Choose fast(er) algorithm, take advantage of special cases
§ Reduce queueing costs
§ Special limited hardware can be allocated if available
§ Choice of multiple transfer paths could also be performed

31

Basics

§ Mirror regular nonblocking collective operations
§ For each nonblocking MPI collective, add a persistent variant
§ For every MPI_I<coll>, add MPI_<coll>_init
§ Parameters are identical to the corresponding nonblocking

variant – plus additional MPI_INFO parameter
§ All arguments “fixed” for subsequent uses
§ Persistent collective operations cannot be matched with

blocking or nonblocking collective calls

32

Example

33

for (i = 0; i < MAXITER; i++) {
compute(bufA);
MPI_Ibcast(bufA, …, rowcomm, &req[0]);
compute(bufB);
MPI_Ireduce(bufB, …, colcomm, &req[1]);
MPI_Waitall(2, req, …);

}

MPI_Bcast_init(bufA, …, rowcomm, &req[0]);
MPI_Reduce_init(bufB, …, colcomm, &req[1]);
for (i = 0; i < MAXITER; i++) {

compute(bufA);
MPI_Start(req[0]);
compute(bufB);
MPI_Start(req[1]);
MPI_Waitall(2, req, …);

}

Nonblocking collectives API

Persistent collectives API

Init/Start

§ The init function calls only perform initialization; do not start
the operation

§ Ex: MPI_Allreduce_init
– Produces a persistent request (not destroyed by completion)

§ Requests work with MPI_Start/MPI_Startall

§ Only inactive requests can be started

§ MPI_Request_free can free inactive requests

34

Ordering of Inits and Starts

§ Inits must be ordered like all other collective operations
§ Persistent collective operations can be started in the same

order, or different orders, at all processes
§ MPI_Startall can contain multiple operations on the same

communicator due to ordering freedom
§ A new communicator INFO key will be added that asserts

persistent collectives starts will be strictly ordered
§ In some cases, this may improve performance
§ NB: INFO key incompatible with starting multiple persistent

collective operations using MPI_Startall

35

Standardization of Persistence – Approved for MPI-4

§ https://github.com/mpi-forum/mpi-issues/issues/25

§ Ticket #25 approved for MPI-4 in September 2018 (Barcelona)

§ Ancillary matters to be studied

§ https://github.com/mpi-forum/mpi-issues/issues/83

§ Ticket #83 – to be re-read in September (Zurich)

§ https://github.com/mpi-forum/mpi-issues/issues/90

§ Ticket #90 clarifies text throughout the standard properly to
introduce “persistence” in several places where it is not fully
mentioned or documented order – to be read again in
September, 2019

§ “Big MPI” could impact the total API defined here still.

36

https://github.com/mpi-forum/mpi-issues/issues/25
https://github.com/mpi-forum/mpi-issues/issues/83
https://github.com/mpi-forum/mpi-issues/issues/90

37

§ Concept of many actors (threads) contributing to a larger operation in
MPI

– Same number of messages as today!

– No new ranks/naming of threads---threads can remain remotely anonymous

§ Example: many threads work together to assemble a message

– MPI only has to manage knowing when completion happens

– These are actor/action counts, not thread level collectives, to better enable
tasking models

§ No heavy MPI thread concurrency handling required

– Leave the placement/management of the data to the user

– Knowledge required: number of workers, which is easily available

§ Added Benefit: Match well with Offloaded NIC capabilities

– Use counters for sending/receiving

– Utilize triggered operations to offload sends to the NIC

Partitioned Communication:
Allow for Better Thread Parallelism in MPI

38

§ Expose the “ownership” of a buffer as a shared to MPI

§ Need to describe the operation to be performed before contributing
segments

§ MPI implementation doesn’t have to care about sharing
– Only needs to understand how many times it will be called

§ Threads are required to manage their own buffer ownership such that
the buffer is valid

– The same as would be done today for code that has many threads working on a
dataset (that’s not a reduction)

§ Result: MPI is thread agnostic with a minimal synchronization overhead
(atomic_inc)

– Can alternatively use task model instead of threads, IOVEC instead of
contiguous buffer

§ Can also be used single-threaded with pipelining only with a strong-
progress MPI

Persistent Partitioned Buffers

39

§ Like persistent communications, setup the operation
int MPIX_Partitioned_send_init(void *buf, int count, MPI_Datatype data_type,

int to_rank, int to_tag, int num_partitions, MPI_Info info, MPI_Comm comm,
MPI_Request *request);

§ Start the request
MPI_ Start(request)

§ Add items to the buffer
#omp parallel for …
int MPIX_Pready(void* buf, int count, MPI_Datatype in_datatype,

int offset_index, MPI_Request *request);

§ Wait on completion
MPI_Wait(request)

§ Optional: Use the same partitioned send over again
MPI_ Start(request)

Example for Persistence

40

§ We can have similar functionality with a

int MPIX_Ipsend(void *buf, int count, MPI_Datatype data_type, int
to_rank, int to_tag, int num_partitions, MPI_Info info, MPI_Comm
comm, MPI_Request *request);

§ Works just like a regular send with contribution counts
§ First thread to reach Psend gets a request handle back that can

be shared with other threads – some MPI locking
§ Setup happens on first call
§ Track by comm and buff addr
§ MPI_Psend (completing): requires multithreaded MPI program to

add buffers via Pready…

Works for non-Persistent Comms

41

MPI implementations can optimize data transfer under the
covers:

Opportunities for Optimization

2.1 A Solution for Many Applications
Existing multi-threaded code can be written such that

many threads (actors) contribute to a single solution in a
shared memory bu↵er. The need for each of the threads
to have knowledge of each other is limited, with the ba-
sic knowledge of where the solution must be written to for
each thread being of primary concern. As such, the need for
thread to thread communication in MPI is concomitantly
limited, the access to the larger input bu↵er of data used
and the output bu↵er for the solution is the main concern.
For example, for a stencil code, one might further break
up the simulation space within a given MPI process in the
same way that it was done for the multiple processes them-
selves. The data to be exchanged (a face of a 3D simulation
space) with the process neighbor only needs the face data
for the process. It does not need to understand the number
of threads nor the layout of the data that each of the threads
is working on in another process. What is needed is that the
entire face data be sent to the other neighbor process.

To enable this type of computation/communication in MPI
with minimal overheads, the threads can deliver their por-
tion of the overall data to MPI with an MPI_Partitioned_

Add_to_buffer
1 call. The intention of this proposed func-

tion is to provide a portion of data to an operation that will
collect many pieces of data from many actors and deliver
the payload to the requested MPI process. This approach
requires that some information about the partitioned opera-
tion be expressed to MPI prior to writing to any bu↵ers. The
partitioned operation interface leverages the persistent com-
munications interface in MPI to provide this data. First, the
operation must be initialized; this will provide the required
information to setup the bu↵ers and the synchronization
methods (which could be as simple as an atomic increment
on a counter). This operation can subsequently be started
and finished as a normal persistent communication would
be, using the same semantics as a traditional persistent com-
munication, with modifications for the partitioned nature of
the operation. An MPI_Partitioned_Send_Create(Comm,

to_rank, to_tag, base_address, data_type, count, num_

contributors, &request)
2 call can be used to initialize the

partitioned send, which is similar to a persistent operation
setup. The mechanisms used to start/stop the operation
are similar to persistent operations as well. Calling a MPI_

Start(request) call will activate the partitioned send, but
the actual data transmission will only start/complete once
the parts of the message are delivered to MPI. The most
näıve implementation of this would be that no data be sent
over the wire until all parts of the overall communication
had been assembled by MPI (of course parts of the message
could be sent before all parts are received for optimization
purposes, as will be discussed later). The method of fin-
ishing a partitioned send is a simple MPI_Wait(request) as
one would typically wait for a request to complete in MPI.
This process is illustrated at a high level in Figure 1. It is
important to note that in this paper we refer to the actors
on the bu↵er as threads, when they could be tasks instead.

While similar communication could be accomplished with
many individual smaller MPI_Send calls from each thread,
this partitioned data approach has several key advantages.
First, the overhead of synchronization between threads can

1A new proposed API by the authors.
2Additional new API functionality.

 Thread ID # 15 places
data to index 15

Thread ID #37 places
data to index 37

Subsegment of the message is complete
with the addition of data to index #15, so
message segment is sent

Origin
Shared
Memory
Buffer

Target
Shared
Memory
Buffer

Message is partially completed on
the target side

Concurrently

Figure 1: An example of multiple threads placing
data into a partitioned bu↵er with partial bu↵er
sending capabilities in the MPI library.

be reduced, inasmuch as each contributor to the single larger
MPI operation can add its respective data and all that is
needed is an atomic increment to maintain the count on the
number of contributions to the partitioned send (the number
of contributions is known at the point that the partitioned
operation is initialized). This has much lower overhead than
the current MPI_THREAD_MULTIPLE methods for en-
suring thread-safe MPI operations, as it does not require
locking of key MPI library functions as the impact of the
call is confined to the partitioned operation’s bu↵er3. In
addition, there are opportunities for the MPI library to pro-
vide optimizations to the communication as a whole. For
example, a partitioned send could take one of two extremes
in when it would place data out on the wire for transmission,
it could send the data as one large message once all of the
parts have been placed in the bu↵er. Alternatively, it could
send each individual part as they are placed. Of course,
any combination in between these two extremes could also
be implemented. This can provide certain benefits, partic-
ularly when knowledge about the network can be applied,
like sending message chunks that are the size of the underly-
ing network MTU whenever they are complete. This should
provide a steady lower bandwidth requirement communica-
tion stream, that would also minimize wire-side communi-
cation overhead by optimizing payload sizes with respect
to header/tail data. While this can also be accomplished by
sending large messages, this approach can lead to less bursty
tra�c over time, lessening the possibility of temporally lo-
calized stress on the network resources.

2.2 Applicability to Stencil Codes
Stencil codes can be satisfied in their threading require-

ments with a call to MPI that allows for partial placement
of data into a communication bu↵er, letting MPI pack the
larger communication bu↵er as a whole and communicating
the entirety of it to other MPI processes. Since this thread-
ing/communication system relies on underlying shared mem-
ory among the threads, no scatter operation needs to take
place on the receiving process, so long as the target for place-

3Furthermore it works to localize any additional overhead

§ Subdivide larger buffers and send
data when ready

§ Could be optimized to specific
networks (MTU size)

§ Number of messages will be:
1 < #messages ≤ #threads/tasks
For a partition with 1 part per thread

§ Reduces the total number of
messages sent, decreasing
matching overheads

42

§ Partitioned buffer operations can always be consider as
multi-threaded

§ Using partitioned sends doesn’t necessarily require locking
in other parts of the MPI library – confine threading in MPI

§ Technically, using partitioned buffers would work with
MPI_THREAD_SERIALIZED

– If only using partitioned sends, no need for locking in the library

§ No more thread_multiple?
– Not quite, but we can have alternative threading modes for MPI,

where user management of data is guaranteed and only inherently
thread safe operations are called, MPI_THREAD_PARTITIONED

Different Approach to Threading

43

§ “Early bird communication”

§ Early threads can start moving data right away
§ Could implement using RDMA to avoid message

matching

New Type of Overlap

44

§ Performance benefit of early-bird overlap
– Better than current fork-join-communicate methods

§ Lightweight thread synchronization
– Single atomic

§ Same message/matching load as today
– Avoid the coming storm

§ A great way to adapt code to use RDMA underneath
– Keeping existing send/recv completion semantics

§ Easy to translate code
– May be able to automatically translate send/recv with simple parallel

loops over to psend-type operations

§ Read our ISC 2019 paper!

Partitioned Communication Benefits

Standardization of “Partitioned Point-to-point”

§ https://github.com/mpi-forum/mpi-issues/issues/136
§ Vote and/or Reading in September, 2019 (Zurich)

45

https://github.com/mpi-forum/mpi-issues/issues/136

Big MPI

§ Idea: Finally make MPI fully 64-bit clean

§ More 2 Gi element transfers “is a pain”

§ Solve issue across API: Collectives, Point-to-point, I/O, [and RMA]

§ Started with a significant study and prototyping effort by Jeff

Hammond that yielded a proposal for Collective communication

– Workarounds possible for pt2pt do not work well for collectives

– v/w-collectives and reductions have the most concerns

§ Neighborhood collectives fixed the large-displacement problem

(for these new ops)

§ We have several solution paths…

46

Approach 1 – well understood, on-hold

§ Add _Y to all functions that need extended parameters (formerly
_X)

§ int -> MPI_Count for the number of datatypes transferred

§ int for displacements becomes MPI_Aint (maybe MPI_Count)

§ Impact: 133 APIs in MPI-3.1

§ Solves: C/C++, FORTRAN

§ Works with PMPI fine

§ Forum feedback: put on hold, look for other approaches

47

Approach 2 – Currently preferred, being worked

§ Utilize function polymorphism in C, C++, and FORTRAN

§ The 32-bit-clean and 64-bit clean APIs can match across the

group, as long as the all the type signatures are compatible with

the APIs used

§ Adds no apparent new functions to MPI

§ Underneath, still have 133+ more functions

§ PMPI symbols are still literally defined with _Y in the names (or

such)

§ Controversy on C11 generics still open

§ C++ support requires a different header or minimal C++ separate

support

§ FORTRAN good with modules
48

Approach 3 – Currently speculative, being worked

§ Complete specification of partitioned communication

§ Partitioned APIs are defined --- over time--- for point-to-point,

collective, supporting nonblocking, blocking, and persistent, I/O

§ Sub-approach #a:

– Simply change int -> MPI_Count, and allow MPI_Aint displacements in all

the new APIs

§ Sub-approach #b:

– Simply change int -> MPI_Count and use partitioned model for large

transfers

§ MPI-4.0 -> Only point-to-point solved

§ MPI-4.x, x>-=2 -> Standardize the rest of partitioned comms, and

solve rest of Big MPI thusly over time; merges with persistent

collective extensions too 49

Standardization of “Big MPI”

§ New ticket posed in Chicago, May 2019

§ Overrides previous (_X/_Y) tickets:

– https://github.com/mpi-forum/mpi-issues/issues/137

§ Virtual Meeting, July 24

§ Reading in September, 2019 (Zurich)

50

https://github.com/mpi-forum/mpi-issues/issues/137

51

Contact:
tony-skjellum@utc.edu

mailto:tony-skjellum@utc.edu

